One quick thing, before you stop reading: we need to have another exam soon. We will postpone it until next week, even though I had nominally scheduled it for this coming Friday. Plenty of time, and I'd rather we get through a bit more material first.
Some time ago I wrote a short math guide for intro PH courses. You might find it useful, though it isn't as complete as I would like. Actually, you might find it more useful when you get to 300-level PH courses that use vector calculus fluently.
Also, I came across a great electronics text online from Texas Instruments geared specifically toward op-amps. We've covered enough material now that the 'Review' should make sense now, so if you want to do a little reading on what we're doing now, this is a good start. My own favorite reference is The Art of Electronics by Horowitz and Hill, which is in the Rogers library. Our coverage of transistors, signals, and op-amps has been based largely on their treatment. Great book if you can find a decently priced copy, highly recommended if you plan to continue fiddling with circuits.
For the next few classes, we'll continue our discussion of magnetism. Our focus is going to be calculating the magnetic field due to various distributions of currents and the effects of magnetic fields on moving charges and currents, without much regard to *why* moving charges create a magnetic field for the moment. We'll also cover permanent magnets a bit. Later, after we've gotten through induction and time-varying E and B fields, we'll return to the subject of why magnetic fields arise in the first place, which will require a crash-course in special relativity. For that, you might find my PH102 notes useful. Light on math by construction, but they cover special relativity, deriving B from E, and at least touch on most of the topics in PH126.
Some time ago I wrote a short math guide for intro PH courses. You might find it useful, though it isn't as complete as I would like. Actually, you might find it more useful when you get to 300-level PH courses that use vector calculus fluently.
Also, I came across a great electronics text online from Texas Instruments geared specifically toward op-amps. We've covered enough material now that the 'Review' should make sense now, so if you want to do a little reading on what we're doing now, this is a good start. My own favorite reference is The Art of Electronics by Horowitz and Hill, which is in the Rogers library. Our coverage of transistors, signals, and op-amps has been based largely on their treatment. Great book if you can find a decently priced copy, highly recommended if you plan to continue fiddling with circuits.
For the next few classes, we'll continue our discussion of magnetism. Our focus is going to be calculating the magnetic field due to various distributions of currents and the effects of magnetic fields on moving charges and currents, without much regard to *why* moving charges create a magnetic field for the moment. We'll also cover permanent magnets a bit. Later, after we've gotten through induction and time-varying E and B fields, we'll return to the subject of why magnetic fields arise in the first place, which will require a crash-course in special relativity. For that, you might find my PH102 notes useful. Light on math by construction, but they cover special relativity, deriving B from E, and at least touch on most of the topics in PH126.
No comments:
Post a Comment